Identifying Dna Splice Sites Using Patterns Statistical Properties and Fuzzy Neural Networks
نویسنده
چکیده
This study introduces a new approach to recognize the boundaries between the parts of the DNA sequence retained after splicing and the parts of the DNA that are spliced out. The basic idea is to derive a new dataset from the original data to enhance the accuracy of the wellknown classification algorithms. The most accurate results are obtained by using a derived dataset that consists from the highest correlated features and the interesting statistical properties of the DNA sequences. On the other hand, using adaptive network based fuzzy inference system (ANFIS) with the derived dataset outperforms well-known classification algorithms. The classification rate that is achieved by using the new approach is 95.23 %, while the classification rates 92.12 %, 86.75 %, 83.13 % and 84.51 % are obtained by LevenbergMarquardt, generalized regression neural networks, radial basis functions and learning vector quantization, respectively. Moreover, this approach can be used to represent the DNA splice sites problem in form if-then rules and hence provides an understanding about the properties of this problem.
منابع مشابه
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملiSS-PseDNC: Identifying Splicing Sites Using Pseudo Dinucleotide Composition
In eukaryotic genes, exons are generally interrupted by introns. Accurately removing introns and joining exons together are essential processes in eukaryotic gene expression. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapid and effective detection of splice sites that play important roles in gene structure annot...
متن کاملIntegrated Model of DNA Sequence Numerical Representation and Artificial Neural Network for Human Donor and Acceptor Sites Prediction
Human Genome Project has led to a huge inflow of genomic data. After the completion of human genome sequencing, more and more effort is being put into identification of splicing sites of exons and introns (donor and acceptor sites). These invite bioinformatics to analysis the genome sequences and identify the location of exon and intron boundaries or in other words prediction of splicing sites....
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کامل